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Abstract. Graph-based representations underlie a wide range of sci-
entific problems. Graph connectivity is typically represented as a sparse
matrix in the Compressed Sparse Row format. Large-scale graphs rely on
distributed storage, allocating distinct subsets of rows to compute nodes.
Efficient matrix transpose is an operation of high importance, providing
the reverse graph pathways and a column-ordered matrix view. This
operation is well studied for simple graph models. Nevertheless, its res-
olution for multigraphs and higher-cardinality connectivity matrices is
unexistent.
We advance state-of-the-art distributed transposition methods by provid-
ing a theoretical model, algorithmic details, MPI-based implementation
and proof of mathematical soundness for such complex models. Bench-
mark results demonstrate ideal and almost ideal scaling properties for
perfectly- and heterogeneously-balanced datasets, respectively.

Keywords: Distributed Matrix Transposition · Multigraphs Transposition ·
Multigraphs Reversal · High-Cardinality Cell Matrices Transposition

1 Introduction

The Seven Bridges of Königsberg, published by Leonhard Euler in 1736, is re-
garded as the first graph theory paper in history [8]. The problem was to devise
a walk across the city — composed by two large islands connected to each other
or to two mainland portions of the city by seven bridges — that would cross
each bridge once and only once. Combined with Euler’s formula relating the
number of edges, vertices, and faces of a convex polyhedron, it represents the
beginning of the mathematical branch known as topology [17]. Since then, ap-
plications of graph theory in real life problems have grown extensively in most
scientific domains. To name a few, computer science (pattern mining [18], image
segmentation [7]), machine learning (sentiment analysis [15]) and biology (pro-
tein folding [14]) . It is not uncommon for certain use cases to be represented by
graph models in the order of billions of edges — such as the travelling salesman
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Fig. 1. Four distributed memory layouts for a sparse matrix with 12 cells placed on
6 rows equally distributed across 3 ranks. a) The original dataset stores a whole-row
vertically-concatenated representation of the dataset. b) A locally transposed matrix
holds the original dataset, represented by the orthogonal (horizontal) concatenation of
rank datasets. c) A view swap stores the same information as the original dataset in
the orthogonal (whole-column) representation. d) The distributed transpose displays
a transposed similar-view layout of the original dataset.

problem on a large road map [5], friendship connectivity on social networks [6]
or URLs’ cross-referral on web crawlers [1] — requiring distributed storage on a
network of compute nodes.

Graph connectivity is commonly represented as a matrix. Cells in the matrix
represent edge information between two nodes uniquely identified by the row
and column ids. For efficient storage, data is represented by the Compressed
Sparse Row format (CSR, CRS or Yale format). The CSR format represents a
sparse matrix by three arrays, that include the values of non-empty cells (or
equivalently the non-missing nodes in the graph), the number of columns per
row (number of connections for a given edge), and the indices of the columns
(ids of connecting edges) — refer to Figure 2 for an example. On a distributed
memory environment, sequential rows are assigned to different compute nodes,
and all columns within the row interval are stored in the same local machine.
Graph partitioning [12] allows for groups of non sequential rows to be assigned
to compute nodes, minimising a given cost function.

The transpose of a matrix is an operation of high importance, as it pro-
vides (1) the reverse pathways between nodes of a graph, and (2) the retrieval
in local memory of the alternative column-ordered connectivity, useful for it-
erations over rows of a given column, and vice-versa. The transpose operation
is a solved problem for graph models with a single value per cell, or analo-
gously, a single edge per pair of vertices. The Message Passing Interface (MPI)
communication library, commonly used in large compute systems, exposes these
operations via the MPI Alltoall, MPI Alltoallv and MPI Alltoallw calls on
MPI-2, for the dense, homogeneously typed sparse, and heterogeneously typed
sparse matrix use cases, respectively. Their asynchronous counterparts are pro-
vided by MPI-3 as MPI Ialltoall, MPI Ialltoallv and MPI Ialltoallw. The
methods are based on all-to-all collective calls that performs a scatter-gather
operation of the cells on a distributed CSR matrix. Alternative implementations
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Fig. 2. The Compressed Sparse Row format (CSR). Left: a sample directed graph with
6 vertices (nodes 0-5) with a single connection (edges A-Q) between nodes. Middle:
the representative distributed sparse matrix, stored on three compute nodes (ranks
0-2). Right: The representative CSR format data arrays per compute node.

focused on efficiency have been proposed, with an extensive analysis well cov-
ered by existing literature. To name a few, compressed sparse block transpose
method from Buluc et al. [3], the methods for point-to-point communication and
overlap of computation and communication from Choi et al. [4], the scan-based
and transpose-merge-based methods from Wang et al. [16], the sorting-based
methods form Gustavson et el. [10] and the cache-efficient transpose methods
based on the SIMD working pattern from Gustavson et al. [9], mostly suitable
for smaller networks or networks with specialized point-to-point communication
protocols, such as Infiniband.

Nevertheless, single edges between pairs of nodes is a property that is often
unexistent in real life situations. As an example, the matrix representing the list
of common interests among pairs of users in a social network connectivity matrix;
or the map of URLs cross-referral on a web crawler, where one may be required
to store not only the number of hyperlinks between pages, but also a set of fields
holding information about every link. For such scenarios, both a definition of a
standard data format and the definition of the transpose operation or converse
data matrix view have not yet been explored.

In that line of thought, we introduce a new class of matrix and graph trans-
pose problems, represented by matrices with cell datatypes defined by list of
values of distinct lengths (henceforth referred to as high-cardinality matri-
ces), or equivalently graphs with multiple connections between node pairs, also
referred to as multigraphs. We describe a general data format for the dis-
tributed storage of the dataset, and the workflow of the distributed algorithm
for the transpose of matrix and graph structures. We introduce the eXtended
Compressed Sparse Row format (XCSR), an extension to the CSR format, and
a serialized (array-based) representation of a dataset fitting the specification of
our problem. Alongside the algorithmic description and proof of mathematical
soundness, we provide an overview of existing methods, their implementation on
the C programming language, and the contribution of our work to the state of the
art. Our methods rely exclusively on MPI collective communication primitives,
maximizing the efficiency in existing supercomputers with hardware specialized
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MPI implementation, taking advantage of network topology and retailer specific
optimizations — such as 6D torus, network backbones or Infiniband — making
our methods easily portable and efficient on a wide range of architectures. Bench-
mark results on a network of 128 Intel Xeon compute nodes demonstrate almost
ideal weak and strong communication scaling properties on heterogeneously-
balanced dataset, and ideal scaling on a perfectly-balanced scenario.

2 Problem Specification

A graph G = (V,E) is a data structure consisting of a set of nodes or vertices
V , and a set of links or edges E. An edge {i, j, e} ⊂ {N,N, T} in E represents
a connection between vertices i and j in V with edge information of type T ,
and can be either ordered or unordered, depending on whether the graph is
directed on undirected. A matrix M represents the connectivity E in G, iff
for all {i, j, e} ∈ E, if G is ordered then Mij = e, and if is unordered then
Mij = Mji = e. Since M holds the possible connectivity between nodes in
V , then M is a square matrix of size |V | × |V |. Moreover, if M is unordered,
then only a lower- or upper-diagonal representation is necessary, as the matrix
is symmetric. For brevity, he following analysis focuses on the ordered use case
only, as the unordered use case is simply a sub-problem of the ordered one.

A transposition of a matrix M is defined by MT
ij = Mji, and holds an converse

column-row cell placement of the initial matrix. The graph with connectivity
described by a matrix MT can be then described simply by G? = (V,E?), where
E? =

{
{j, i, e} for all {i, j, e} ∈ E

}
.

A distributed memory data layout assumes that the vertices V are distributed
across R compute nodes (ranks) and only rows local to each memory region are
directly accessible to a rank. We will refer to Gr = (Vr, Er) as the subset of
G that is stored in rank r, with vertices Vr and edges Er. Each rank holds a
disjoint subset of rows of the initial graph G, such that cover (

⋃
r
Gr = G) and

distinct (Gr

⋂
Gs = ∅,∀r 6= s) properties hold. Ranks only hold information

about outgoing connectivity (or from edges in this rank to other vertices), i.e.

Er =
{
{i, j, e} ∈ E

∣∣∣ i ∈ Vr

}
. Thus, the same cover and disjoint properties also

hold for edges.
Given a dense matrix representation of a graph connectivity E, the algorithm

to compute G?
r = (Vr, E

?
r ) for every rank r, requires only the computation of the

matrix MT
r for the connectivity E?

r . Note that vertices information is local to
a compute node, therefore the nodes information V is the same for G and G?.
The implementation of the distributed transpose is well known for a dense con-
nectivity matrix, and available via the MPI Alltoall collective call, that inputs
(outputs) an array of values, the size of the array, and datatype of the values to
be sent (received), with an additional term for the network communicator that
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is an abstraction of the ranks in the network:

int MPI_Alltoall( //output status

void *sendbuf, int sendcount, MPI_Datatype sendtype, //input values

void *recvbuf, int recvcount, MPI_Datatype recvtype, //output values

MPI_Comm comm); //input comm

It is convenient to provide the typing of input and output parameters, so
that the explanation of the methods that follow are defined more clearly. The
typing of MPI Alltoall is defined as:

MPI Alltoall : (TN × N× TMPI)× CMPI → (TN × N× TMPI)× SMPI

where TN represents an array of values of type T generalized as a void pointer,
TMPI is the MPI-defined datatype related to T in the MPI Datatype collection,
CMPI is the user or MPI-defined identifier for the communicator MPI Comm (typ-
ically MPI COMM WORLD for all ranks), and SMPI is the error status described by
the int return value. Note that the value for the sendcount and recvcount vari-
ables are equal to the network size R — easily retrievable via MPI Comm size —
and the types sendtype and recvtype are the same for the transpose. The asyn-
chronous variant MPI Ialltoall includes an extra term MPI Request *request

for probing of status and will be omitted as the logic follows analogously.
The transpose of the sparse matrix counterpart is a solved problem. The

algorithm is as follows:

1. Each rank is required to hold the init and end row index of every rank, so that
it can match column id with target rank when transposing. This can be per-
formed at the onset of execution by a collective gathering (MPI Allgather)
of the number of rows per rank, followed by computation of offsets, where
each rank’s offset is the sum of the previous ranks’ row count;

2. The rank offsets allow for a rank r to compute the amount of values to be
sent to each rank (including itself). This all-to-all count is represented by
a dense distributed matrix of size R × R. A transpose of the counts matrix
using the previous MPI Alltoall method yields a local representation of the
amount of data to be sent and received by all ranks;

3. a scatter-gather operation follows and sends (delivers) of cell values to the
correct recipients, based on the previous sent (received) counts. A rank r
is now able to retrieve the layout of the locally transposed matrix MT

r by
mapping the received values to the row offset of each rank;

The final collective all-to-all variable size communication method is imple-
mented by MPI in the MPI Alltoallv function:

int MPI_Alltoallv(

void *sendbuf, int *sendcounts, int *sdispls, MPI_Datatype sendtype,

void *recvbuf, int *recvcounts, int *rdispls, MPI_Datatype recvtype,

MPI_Comm comm);

with the typing:

MPI Alltoallv : (TN×NM×NM×TMPI)×CMPI → (TN×NM×NM×TMPI)×SMPI .
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Fig. 3. The extended Compressed Sparse Row format (XCSR). Left: a sample graph
with 6 vertices (0-5) and multiple edges (A-Q) between nodes. Middle: the represen-
tative distributed sparse matrix, stored in 3 ranks. Right: The XCSR data arrays.

Two variations of the previous method are possible and of direct implementa-
tion: (1) for user-defined homogeneous datatypes on edges, one can either create
an MPI derived data struct or provide a serialization of an object — with the
TMPI datatype set to MPI BYTE and the counts and offsets scaled linearly to the
byte size of datatype; (2) for heterogeneous datatypes across edges, a general-
ized version is possible with MPI Alltoallw, providing the list of ltypes TN

MPI

in MPI Datatype *sendtypes and *recvtypes, as in:

int MPI_Alltoallw(

void *sendbuf, int *sendcounts, int *sdispls, MPI_Datatype *sendtypes,

void *recvbuf, int *recvcounts, int *rdispls, MPI_Datatype *recvtypes,

MPI_Comm comm);

with the parameter typing adjusted accordingly:

MPI Alltoallw : (TN×NM×NM×TMPI)×CMPI → (TN×NM×NM×TMPI)×SMPI

The description that follows focuses on the MPI Alltoallv use case, as the
implementation of the variations from this base case is straightforward. A trans-
pose of a sparse distributed matrix is a sequence of three collective communi-
cation calls: an MPI Allgather for the collection of row counts and posterior
computation of rank offsets, an MPI Alltoall dense matrix transpose for the
communication of value counts to be sent and received, and an MPI Alltoallv

for the transpose of the sparse matrix transpose that exchanges the cell values.
The transpose method can thus be encapsulated in a single function call as:

int Transpose( int row_count,

void *sendbuf, int *sendcounts, int *sdispls, MPI_Datatype sendtype,

void *recvbuf, int *recvcounts, int *rdispls, MPI_Datatype recvtype,

MPI_Comm comm);

with the typing:

Transpose : N×(TN×NM×NM×TN
MPI)×CMPI → (TN×NM×NM×TN

MPI)×SMPI
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For readability purposes, we simplify the previous notation by: (1) enforcing
similar send and receive datatypes; (2) inserting a referenced (&) declaration of
rend/recv buffers for an in-place alteration of arguments, as the pre-transpose
information is not required after the transpose; and (3) performing a strongly-
typed declaration of void* buffers into a user-specified type T, leading to:

template<typename T>

int Transpose( //output status

int row_count, //input row count

T *& cell_values, int *& counts, int *& displs, //input/output matrix

MPI_Comm comm); //input comm

with data typing simplified to:

Transpose : N× (TN × NM × NM )× CMPI → (TN × NM × NM )× SMPI

The aforementioned header definition provides a one-to-one match to the
Compressed Sparse Row format. For completion, refer to Figure 2 for a sample
graph, its representative sparse matrix and the data structures local to each rank.
Existing transpose methods cover extensively the transpose operation for such
matrix representation, either at the CSR format, the Block Compressed Format
[3], or other equivalent representation. We now enter our problem domain by
extending the formalism to higher-cardinality cells (i.e. matrix cells whose cells
hold several values), and multigraphs’ connectivity matrices.

Suppose nodes connectivity is not defined by {i, j, e} ⊂ {N,N, T} for an
edge of type T as before, but instead by {N,N, TNij}, where edge information
is defined by a list of connections of variable length Nij . To comply with the
new cell specification, we represent the serialized cell values by the array of all
values and the count of values per cell, typed TN × NN, thus adding an extra
cell counts argument to the previous header definition:

template<typename T>

int Transpose(

int row_count,

T *& cell_values, int *& counts, int *& displs, int *& cell_counts,

MPI_Comm comm);

with parameters typing following accordingly as:

Transpose : N× (TN × NN × NN × NN)× CMPI → (TN × NN × NN × NN)× SMPI .

We refer to the CSR format with the additional term as the eXtended
Compressed Sparse Row format (XCSR, illustrated in Figure 3). Analogously
to CSR-based transpositions, the aforementioned transpose method is XCSR-
compatible and of general application to any problem described by a serializeable
cell defined by list of values of type T .

The C++ implementation of the Transpose method for the XCSR data
structure is available at the Blue Brain open source repository [2]. For brevity,
will be omitted from this document. Instead, the description of the algorithm
and the proof of mathematical soundness are provided in the following section.
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Fig. 4. Left: a distributed matrix, illustrative of the data structures in Figure 3; Cen-
tre: the corresponding metadata, storing row id, column id and number of values per
cell; Right: the locally transposed representation of the matrix.

3 Algorithm

We start the formulation of our problem resolution with the mathematical for-
malism underlying the distributed matrix transpose operations. A horizontal
concatenation of two matrices Mn×m and Nn×m′ is represented by M‖N and
defined as the operation to join two sub-matrices horizontally into a matrix of
dimensionality n× (m + m′), such that:

(M‖N)ij =

{
Mi j , if j ≤ m
Ni j−m , otherwise

(1)

Analogously, a vertical concatenation Mn×m //Nn′×m joins vertically two
sub-matrices into a matrix of dimensionality (n + n′)×m, such that:

(M // N)ij =

{
Mi j , if i ≤ n
Ni−n j , otherwise

(2)

We refer to a view as the perspective of data storage: the column view de-
scribes the matrix as the vertical concatenation of the subsets of rows stored
on each rank. The row view represents the horizontal concatenation of sub-
sets of columns on each rank. It follows that (M‖N)T = (NT // MT ) and
(M // N)T = (NT ‖MT ), as both concatenations provide the same dataset yet
described by two alternative views, and the transpose of a concatenated dataset
yields the orthogonally-concatenated dataset. The local transpose of a ma-
trix M represented by the concatenation of R submatrices in either view, is
defined by the concatenation of the transpose of the individual matrices in the
orthogonal view:

LocalTranspose(M)ij =

{(
MT

1 ‖MT
2 ‖...‖MT

R

)
ji

, if M is in row view(
MT

1 // MT
2 // ... // MT

R

)
ji

, otherwise

(3)
A sample application of the local transpose function is displayed in Figure

1, layout b). The algorithm that describes the local transpose of the XCSR to
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Left: the transposition of the dense matrix holding metadata counts to be sent/recv
per rank. Right: The communication of the metadata via a sparse matrix transpose.

a dataset is detailed in Figure 4. It is relevant to mention that the operation
yields a transposed version of the original rank matrices that formed the initial
dataset, thus no communication between ranks is necessary as the data Mr of
every rank is locally transposed into MT

r . Moreover, it is an involutory function
as both views are orthogonal thus (LocalTranspose·LocalTranspose)(M) = M .

The view swap of a distributed matrix that alternates between a data rep-
resentation on a view and its orthogonal (from row- to column-accessible and
vice-versa), while maintaining the same matrix contents is defined by:

V iewSwap(M)ij =

{(
M1‖M2‖...‖MR

)
ij

, if M is in row view(
M1 // M2 // ... // MR

)
ij

, otherwise
(4)

An application of the view swap is illustrated by layout c) in Figure 1. At the
level of a rank, the matrix data layout after a view swap is unknown until the
swap is performed, as ranks do not hold information about the matrix structure
across other ranks. Therefore, as mentioned previously, a communication step is
required to be executed beforehand, in order to gather the number of rows held
by individual ranks, and compute the row intervals on every other rank r as[∑r−1

r=1 |Vr|,
∑r

r=1 |Vr|
)
. This information is required for the correct matching

of column/row id to target rank, used in the sparse transposition steps that
follow.

The view swap algorithm follows then in two communication steps. The first
step exchanges the local structure of the matrix, with a dense and distributed
sparse matrix transpose operation communicating the count and the metadata
structures, respectively — refer to Figure 5 for further details. As a side note,
sparse matrix transpose of regular matrices would be finalized at this step, as it
provides enough information for the use case of single value per cell (by defining
the tuple <row id, column id, cell value> as metadata in Fig. 5). Moreover,
for the use cases of identical sizes across cells, transposition could be completed
by serializing cell values as a unique data structure, similarly to existing sparse
transpose methods. For our use case of XCSR with higher cardinality per cell
and distinct cell lengths, an additional step is required.

The second step of the view swap performs an all-to-all communication of
value counts to be sent/received, followed by a selective scatter-gather of the
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values. A local reordering of the data structure follows, using a row-column
order of values, according to the matrix structure exchanged by the transpose in
the previous step. This process is detailed in Figure 6. As a relevant remark, the
view swap method is also an involutory function, as each view swap performs
two involutory transpose operations, and two consecutive view swaps yield the
initial dataset.

The distributed sparse transpose (layout d in Figure 1) is defined by
a composition of the local transpose and view swap methods. We have shown
that both the local transpose and the view swap are XCSR compatible. We
will show the distributed sparse transpose is also mathematically sound when
applied to the XCSR. Take a matrix M in row view, represented by the ver-
tical concatenation of partial matrices M1 // M2 // ... // MR. A local transpose
of M leads to MT

ij = (MT
1 ‖MT

2 ‖...‖MT
R )ji. Applying a view swap, we have

MT
ij = (MT

1 // MT
2 // ... // NT

R )ji, which is the definition of the distributed
transpose of M in the original view. In brief, it follows that Transpose(M) =
(LocalTranspose ·V iewSwap)(M). The verification of the commuted involutory
functions with Transpose(M) = (V iewSwap · LocalTranspose)(M) also holds:
a view swap over the original dataset leads to Mij = (M1 // M2 // ... // MR)ij .
The composition of a local transpose yields the final result MT

ij = (MT
1 //

MT
2 // ... // NT

R )ji. As Transpose is a composition of two XCSR-compatible
involutory functions, and because both functions commute i.e. (V iewSwap ·
LocalTranspose) = (LocalTranspose · V iewSwap), then Transpose is by defi-
nition XCSR-compatible and involutory [13].

To finalize, the full transpose algorithm requires five collective communica-
tion calls, performing an MPI Allgather to compute the row offsets of ranks,
two MPI Alltoall and two MPI Alltoallv for the metadata and cell values
transpositions. Moreover, the general applicability of the XCSR and the involu-
tory property of our transpose method, are two properties of high importance as
they guarantee that distributed transposition can be validly executed any num-
ber of times, while respecting the data integrity of a XCSR-based graph problem
representation.
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4 Benchmark

We benchmarked our methods on a network of 128 Intel Xeon Gold 6140 compute
nodes with 18-core at 2.3GHz with AVX-512, interconnected by two Infiniband
EDR networks with a communication bandwidth of 100Gbit/s. Communication
methods are provided by the mvapich2 MPI implementation.

Our initial testbench measured the runtime of our methods applied to a
highly imbalanced distributed matrix. The input data distribution is as follows:
each row holds a total 300 thousand to 1 million columns, uniformly distributed;
each matrix cell stores a list of 128-byte values, with a mean of 5 values per cell.
To test the involutory properties of our methods, each execution performs a com-
position of 12 transpose operations on the same dataset. As a relevant remark,
the computation involved in the transposition process is considered negligible as
the runtime is dictated mostly by the communication workload. The efficiency
of the benchmark in terms of weak and strong scaling on a logarithmic axis rep-
resentation is presented in Figure 7. The weak scaling benchmark presents the
variation of runtime with the number of ranks (4 to 128) for a fixed problem
size per rank. The strong scaling presents the variation of runtime in the same
network configuration, for a fixed total problem size. Results suggest that the
execution time increases almost linearly with the input size (mean number of
rows) per rank on the weak scaling analysis, and with total input size on the
strong scaling use case. The rationale is straightforward, as the runtime is pro-
portional to the bandwidth which is dictated by the number of rows per rank.
Yet, the number of columns varies extensively across nodes, and consequently
across ranks, leading to a heterogeneous amount of communication per rank on
the collective calls. Weak and strong scaling properties follow very closely the
ideal patterns of communication scaling, discussed next.

An analysis of scaling properties in ideal conditions was performed on a sim-
ilar benchmark applied a perfectly balanced dataset. The testbench transposes
a matrix with cells represented by lists of 10 integer values. Each row contains
512 columns. Each rank is assigned an increasing data set of 4096 to 65536
rows on the weak scaling use test, and an equivalent sum of rows for the several
inputs profiled on the strong scale benchmarks. The data distribution guaran-
tees balanced datasets and communication across ranks, and a linear increase
of communication with the matrix size. Further details and the source code of
the testbench is available alongside the implementation of the transposing algo-
rithm [2]. The benchmark results are displayed in Figure 8. We aim to show ideal
weak and strong scaling properties of our algorithm. As the runtime is dictated
mostly by collective communications, the scaling of the methods are heavily de-
pendent on the efficiency of the underlying network and MPI implementation.
Results suggest a linear increase of runtime with the network size for 32 nodes
or more, on the weak scaling analysis, independently of the input size. Similarly,
the strong scaling runtimes decrease to a pattern of constant execution time as
the network size increases to 32 nodes or more.

These results agree with the ideal communication pattern for weak and strong
scaling previously demonstrated by Hoefler et al. [11] — presenting similar run-
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Fig. 7. Weak and strong scaling benchmarks of the transpose algorithm applied to a
heterogeneously-balanced dataset.

times with linearly increasing weak scaling and constant strong scaling when
plotted on a log-log axis representation — demonstrated on a network of up to
32K compute nodes. It is relevant to emphasize that ideal communication pat-
terns do not follow the common assumption of ideal weak and strong scaling in
computation, modelled by constant and linearly decreasing runtimes on the weak
and strong scaling axes, respectively. The rationale behind this discrepancy is
detailed in the aforementioned bibliographic reference: in brief, for a given input
size per compute node, the computation time is reduced when increasing the
network size due to added compute parallelism, yet the total data transmitted
and communication involved in collective communication calls remains constant.

5 Conclusion

This paper introduced a new class of algorithms for the parallel transposition of
distributed multigraphs and distributed sparse matrices with higher-cardinality
cell values. We showed that the existing standard representations are not suffi-
cient to hold high-cardinality information. To overcome this limitation, we in-
troduced an extended version of the Compressed Sparse Row commonly utilised
for graph connectivity representation. We detailed the distributed dense ma-
trix, sparse matrix, and multigraph use cases implementation on the C/C++

programming languages. For full coverage of the topic, we provided guidances
on the implementation of our methods on sparse matrices or multigraphs with
heterogeneously-typed cell and edge values. Methods provided were completed
with their analytical formulation and proof of mathematical soundness. Algo-
rithms were formalized using first principles of computer science, and relying
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Fig. 8. Weak and strong scaling benchmarks for perfectly balanced communication
across compute nodes. A row contains 512 cells, each represented by 10 integer values.

only on existing MPI collective communication calls, making it highly efficient
and of direct porting to modern supercomputing architectures.

We performed a weak and strong scaling benchmark of our methods on a
network of 128 Intel Xeon 6140 compute nodes connected by an Infiniband
network interface. Benchmark results on a perfectly-balanced dataset demon-
strated linearly-increasing weak scaling, and constant strong scaling patterns on
a logarithmic plot representation, suggesting ideal weak and strong communica-
tion patterns for large network sizes, independently of the input size. Runtimes
of heterogeneously-balanced datasets displayed almost ideal scaling properties,
demonstrating the feasibility of our methods on a wide range of scientific problem
domains represented by large-scale graph or matrix data structures.
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14. Möhring, R.H.: Graph problems related to gate matrix layout and pla folding. In:

Computational graph theory, pp. 17–51. Springer (1990)
15. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity

summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting
on Association for Computational Linguistics. p. 271. Association for Computa-
tional Linguistics (2004)

16. Wang, H., Liu, W., Hou, K., Feng, W.c.: Parallel transposition of sparse data struc-
tures. In: Proceedings of the 2016 International Conference on Supercomputing.
p. 33. ACM (2016)

17. Wilson, P.R.: Euler formulas and geometric modeling. IEEE Computer Graphics
and Applications 5(8), 24–36 (1985)

18. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Data Min-
ing, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on. pp.
721–724. IEEE (2002)

https://github.com/bluebrain/matrix-transposer
https://github.com/bluebrain/matrix-transposer

	Efficient Distributed Transposition Of Large-Scale Multigraphs And  High-Cardinality Sparse Matrices

