
Fully-Asynchronous Cache-Efficient
Simulation of Detailed Neural Networks

Bruno R. C. Magalhães1, Thomas Sterling2, Michael Hines3, and Felix
Schürmann1

1 Blue Brain Project, École polytechnique fédérale de Lausanne Biotech Campus,
1202 Geneva, Switzerland

2 CREST - Center for Research in Extreme Scale Technologies, Indiana University,
Bloomington, 47404 IN

3 Department of Neuroscience, Yale University, New Haven, 06510 CT

Abstract. Modern asynchronous runtime systems allow the re-thinking
of large-scale scientific applications. With the example of a simulator of
morphologically detailed neural networks, we show how detaching from
the commonly used bulk-synchronous parallel (BSP) execution allows
for the increase of prefetching capabilities, better cache locality, and a
overlap of computation and communication, consequently leading to a
lower time to solution. Our strategy removes the operation of collec-
tive synchronization of ODEs’ coupling information, and takes advantage
of the pairwise time dependency between equations, leading to a fully-
asynchronous exhaustive yet not speculative stepping model. Combined
with fully linear data structures, communication reduce at compute node
level, and an earliest equation steps first scheduler, we perform an ac-
celeration at the cache level that reduces communication and time to
solution by maximizing the number of timesteps taken per neuron at
each iteration.
Our methods were implemented on the core kernel of the NEURON
scientific application. Asynchronicity and distributed memory space are
provided by the HPX runtime system for the ParalleX execution model.
Benchmark results demonstrate a superlinear speed-up that leads to a
reduced runtime compared to the bulk synchronous execution, yielding
a speed-up between 25% to 65% across different compute architectures,
and in the order of 15% to 40% for distributed executions.

1 Introduction

Asynchronous runtime systems built on a global memory address space (GAS)
opens up new possibilities for numerical resolutions without synchronization
barriers at the core and compute node level, and allow for a substantial reduction
of runtime by better utilizing the CPU’s prefetching capabilities and cache-level
acceleration. Our use case is the simulation of morphologically detailed neural
networks, categorized with the following properties: (1) neurons are branched
representations of spatially discretized capacitors with ionic current channels;
(2) neurons are represented by Ordinary Differential Equations (ODEs) that
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Fig. 1: Left: Model representation of two neurons and a synapse. Each neuron
includes an axonic branch (south of soma, pictured in light) and a spatially dis-
cretized representation of a tree of dendrite compartments (in dark). A synapse
is a connection between an axon and a dendrite of different neurons. Middle:
the RC circuit representing the electrical activity on the membrane of a single
compartment, between the intra and extracellular spaces. Right: The work-
flow of the algorithm. A neuron computes the stepping interval Tsynch from the
synaptic dependencies time instants, and performs Tsynch/∆t steps of length ∆t.

define the current on the capacitor and the voltage-dependent opening of each
ion channel; and (3) ODEs are coupled with a time dependency based on the
synaptic connectivity between neurons. For clarity, refer to Figure 1 (left) for a
schematic representation of the underlying model.

Due to the high complexity of the data representation— including topological
structure, biological mechanisms, synaptic connectivity and external currents —
simulations are computationally very costly. State of the art approaches for the
acceleration of large neural simulations rely on common parallel and distributed
computing techniques. Multi-core and multi- compute node acceleration can be
found in NEURON [1]. Complementary efforts rely on Single Instruction Mul-
tiple Data (SIMD or vectorization) optimization of state variables replicated
across ODEs [2]. Acceleration of small datasets of detailed neuron models have
been explored with branch-parallelism [3] (single-core, Single Instruction Sin-
gle Data, multiple compute nodes), and improved by Magalhaes et al. [4] (with
added multi-core, SIMD, and distributed computation). Volumetric decomposi-
tion and tessellation with parallel processing of spatial regions has been presented
by Kozloski et al. [5].

Similar to most large-scale scientific simulation approaches, synchronization
of neurons in existing methods follows the Bulk Synchronous Parallel (BSP)
model of computation: execution is split in time grids of equidistant intervals, a
period of time with duration equivalent to the minimum synaptic delay across all
pairs of neurons in the system. Synaptic communication is typically performed
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Fig. 2: Distribution of synaptic delays in terms of count (left y-axis) and per-
centage (right y-axis) of all synapses on a network of 219.247 neurons, extracted
from a biologically inspired digital reconstructed model of the rodent neocortex
from Markram et al. [6]. Histogram contains one bin per interval of 0.1ms. The
leftmost bar (x = 0.1ms) represents the communication step size of state of the
art implementations following the Bulk Synchronous Parallel model.

with Message Passing Interface (MPI). It has been shown that, for extremely
large networks of compute nodes, the synchronous collective communication can
account for over 10% of the overall runtime [2]. This limitation is difficult to
overcome in current approaches, as acceleration of the computation of complex
models above one-tenth of real time is difficult, due to latency of inter-process
communication [7].

In that line of thought, this work presents an exhaustive yet not spec-
ulative execution model that improves cache locality and provides cache-level
acceleration by removing synchronous communication steps, and introducing a
fully-asynchronous execution model that advances ODEs timestepping beyond
synchronization barriers, based on the time couplings between equations. Our
strategy includes five components. At first, (1) a fully-asynchronous stepping
protocol that allows elements to perform several timesteps without collective
synchronisation. Cache locality is improved by (2) a fully linear memory repre-
sentation of the data structure, including vector, map and priority queue con-
tainers, and is further increased by (3) a computation scheduler that tracks the
time progress of ODEs in time and advances the earliest element to its furthest
instant in time. Network communication on distributed executions is minimized
by (4) a point-to-point fully-asynchronous protocol that signals elements’ time
advancement to its dependees laid out in a Global Memory Address Space, and
by (5) a local communication reduce operation at every compute node — here-
with also referred to as locality.

We implemented our methods on the core computation of the NEURON
simulator, available as open source [8], with communication, synchronization,
and threading enabled by the HPX-5 runtime library [9], demonstrating a shorter
time to solution on a wide range of architectures.
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1.1 Mathematical Formulation

The main function that describes the currents passing through the membrane of
a capacitor n (also referred to as compartment) is described by:

Cn
dVn
dt

= −
∑
i

gixi(Vn − Ei)−
∑

c:p(c)=n

Vc − Vn
rc

− Vn − Vp(n)
rp(n)

+ In(t) (1)

where Vn is the difference in potential across the membrane of the compart-
ment, and r the resistance between connecting compartments, when available.
The activity of different ions are represented by conductance gi, opening proba-
bility xi, and reversal potential Ei. The function p(c) : N→ N returns the id of
the parent compartment of a given compartment c. Refer to Figure 1 (middle)
for the electrical model of the mathematical equation. The first right-hand side
term refers to the ionic currents passing through the membrane, described by
the Hodgkin-Huxley (HH) model [10]. The voltage-dependent variables xi de-
scribe the opening of the ion channels as a voltage-gated first-order ODE and
for brevity were omitted. The fixed step size of the numerical resolution is de-
fined as the time interval small enough to capture the dynamics of the biological
mechanism with the fastest kinetics — typically the fast Potassium channels —
and is set in our model to 0.025 milliseconds. The second term extends the rep-
resentation of a neuron to a branched morphology, by adding the neighbouring
compartments’ contributions according to the neuronal cable theory for mul-
tiple compartments [11]. To allow the removal of the spatial interpolation of
state along each compartment, long compartments are divided into a sequence
of smaller ones, and — as a result of their small length — assume that the
average state of a compartment along its length is accurately represented by
the state of a compartment at its center, and needs only interpolation at con-
secutive discrete time intervals. The final right hand side term I(t) refers to
external currents from time driven events such as injected current stimuli and
synaptic activity. The synaptic delay for a given synapse connecting a pre- to
a post-synaptic neuron is determined by the time required for the information
following an Action Potential (spike) from the pre-synaptic neuron axon to reach
its target post-synaptic neuron dendrite.

We apply the simplification that the spike propagation along the axon is
stereotypic and that it can be approximated by converting the path from the
soma to the synapse to a delay interval after which a simple event is delivered
to the synapse. In the model of Markram et al. [6], the minimum synaptic delay
in our model is set to 0.1ms or equivalently 4 compute steps — refer to Figure
2 for details. — and accounts for circa 0.13% of all the synaptic delays. The
communication of spikes at the end of every minimum synaptic delay time frame,
allows the update of neuron states in the subsequent period without loss of
information.
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2 Methods

Significant cache acceleration is difficult to achieve for scientific problems de-
fined by complex data representations. Typically, the main principles to improve
cache-efficiency are based on the following rules: using smaller data types and or-
ganizing the data so that memory alignment holes are reduced; avoiding the use
of algorithms and data structures that exhibit irregular memory access patterns;
using linear data structures, i.e. serial memory representations that improve ac-
cess patterns; and improving spatial locality, by using each cache line to the
maximum extent once it has been mapped to the cache. Following this reason-
ing, the next section details the implementation of our cache-efficiency methods.
For completion, the workflow of the scheduled stepping and the kernels of indi-
vidual compute steps discussed hereafter are presented in Figure 1 (right).

2.1 Linear Data Structures

To avoid fragmentation of data layouts in memory due to dynamic allocations
and optimize cache memory reutilization, we implemented a fully linear neuron
representation, including class variables and containers. Because the number of
elements in the containers are either fixed or defined by a predictable worst case
scenario, the size of the container data structures can be computed beforehand.
The description of the containers follows in the following paragraphs.

Linear Vector: implemented as a serialization of the std::vector class with the
meta data, address of array, and elements of the array placed on a sequential
memory space. An illustration of the linear vector data structure is displayed in
Figure 3 (a).

Linear Map: an unordered map structure storing the mapping of a key to a value
or to an array of values. A search for a given key is performed with a binary search
across all (ordered) keys, thus yielding similar computational complexity as the
std::map implementation with a red-black tree, at O(log n). The index of a key
refers to the count and the pointer to the elements for that key. The memory
layout is presented in Figure 3 (b). Moreover, the linear data representation of
the map values allows for operations such as minimum value, maximal value and
value query to be performed with the same efficiency as a vector.

Linear Priority Queue storing time-driven events as pairs of delivery time and
destination. Capable of handling dynamic insertion and removal of events through-
out the simulation on a queue of time ordered events. Our implementation relies
on a map of circular arrays of ordered time events per pre-synaptic id (the key
field). Circular arrays are dimensioned by a pre-computed maximum size, defined
by the maximum number of events that can occur during the time window that
two given neurons can be set apart at any time throughout the execution. As an
example, for a given synaptic connectivity A→ B with minimum synaptic delay
of 1ms and the converse B → A of 5ms, the maximum stepping time window
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Fig. 3: Memory representation of linear data structures. Gray arrows represent
connections between contiguous memory regions. a) linear vector; b) linear map;
c) linear priority queue; d) a circular array representing a sample entry in the
priority queue.

between both is 6ms long. To retrieve all subsequent events to be delivered in
the following step, the algorithm loops through all keys, collects all events in
the interval, and returns the time-sorted list of events. This replaces the iter-
ative peak/top and pop operations underlying regular queue implementations.
The memory layout is presented in Figure 3 (c). At the level of each key, given
a pre-synaptic neuron id, the list of future events is retrieved in the pop-push
interval of elements in the respective circular array. Push (pop) operations will
increment the push (pop) offset variable and insert (retrieve) the element in that
position. For completion, Figure 3 (d) displays an example of the circular array
memory structure for a given key.

As a side note, cache-optimized implementations of priority queues such as
funnel heap, calendar queue or other cache-oblivious queues [12] improve mem-
ory access pattern yet do not guarantee fully-linear memory allocation. For the
sake of comparison, the computational complexity of both ours and the stan-
dard library std::priority_queue implementations are similar, requiring the
retrieval of all events within the next timestep (O(k) for a loop through the
all k queues and extraction of the first element on the circular arrays), plus a
sorting operation (with worst-case scenario O(n log n)) for a solution of size n,
compared to the standard library implementation requiring a complexity in the
order of O(n log n) for n retrievals.



Fully-Asynchronous Cache-Efficient Simulation of Detailed Neural Networks 7

ne
ur

on
 id

time 
(ms)

1
2
3
4

5
6
7

0 1 2 3 4 5
ts4

min delay td 4→1 

min delay td 4→5 

refractory period tr of neuron 4

ts4
+tr4

td 4→3

time 
(ms)

1
2
3
4

5
6
7

0 1 2 3 4 5
ts6

+tr6

td 2→4 

ts2
ts5

ts2
+tr2

td 6→4

td 7→4 

ne
ur

on
 id

tr of neuron 2

tr neuron 6

Fig. 4: A representative schema of the algorithm for dependency based synchro-
nization of stepping. Left: a sample network of neurons (vertices 1-7). Arrow
heads (tails) connect to post- (pre-) synaptic neurons. Labels on edges describe
the minimum synaptic delay from a pre- to a post-synaptic neuron. Center:
outgoing communication for neuron 4. Arrow tail (head) represents a message
to the source (destination) neuron. A neuron transmits the time step allowed by
the post-syn. neuron, given by his present time plus the minimum transmission
delay the a post-synaptic neuron — represented by td pre→ post and conform-
ing to the graph on the left. Spike notifications (ts, circles) allow post-synaptic
neuron to freely proceed to a time equivalent to the spike time plus the refrac-
tory period (tr) of the pre-synaptic neuron. Right: incoming communication
for neuron 4. A post-synaptic neuron actively receives progress notifications and
keeps track of the maximum step allowed based on pre-synaptic neuron status.

2.2 Time-Based Elements Synchronization and Stepping

To allow for a flexible progress of neurons in time that detach from the constraints
of the minimum synaptic delay across all pairs of neurons in the system (0.1ms
or 0.13% of total delays, shown previously in Figure 2), we introduce a graph of
time dependencies between neurons that allows for a given post-synaptic neuron
to advance in time based on their pre-synaptic dependencies’ progress. The result
is an exhaustive stepping mechanism, that maximises the number of steps per
neuron and the simulation time held on CPU cache. The pre- to post-synaptic
neuron time updates are provided by an active asynchronous pairwise neuron
notification messaging framework. Stepping notifications from a pre- to a post-
synaptic neuron are sent at a period defined by their minimum synaptic delay. At
the onset of every computation step, a neuron notifies its post-synaptic neuron
ids of its stepping if necessary, and stores in a queue the next stepping when
notification is required. To reduce communication, the transmission of a spike is
also handled as a stepping notification by the post-synaptic size. As a problem-
specific optimization, communication is further reduced by taking into account
the refractory period, i.e. an interval after a spike during which a neuron is
unable to spike again. A schematic workflow of the time-dependency algorithm
is presented in Figure 4. The fully-asynchronous stepping yields a more flexible
threading by completely removing collective synchronization barriers, less often
communication as the pairwise communication delays are generally two orders of
magnitude longer than the global minimum transmission delay and a full overlap
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Fig. 5: A sample workflow of 4 iterations of the neuron scheduler applied to the 7
neuron network displayed in Figure 4. On the top-left (frame 1), neuron 4 is the
earliest in time (coloured black) and is allowed to proceed to time 1.5ms, dictated
by the transmission delay of the pre-synaptic neurons 2, 6 and 7 (coloured gray).
The same logic follows in the following iterations, with neurons 3, 2 and 5 being
the next ones to advance, as pictured in frame 2) and 3), respectively.

of computation and communication. To maximise the number of steps taken on
any run, a neuron scheduler allows for an optimal decision of the next neuron to
step, by keeping track of the progress of neurons. This topic is covered next.

2.3 Neuron Scheduler

To maximise cache efficiency, a scheduler was implemented to control and trigger
the advancement of neurons in time based on their simulation time. At every
iteration, the scheduler (one per locality) actively picks the earliest neuron in
time and triggers its stepping. On multi-core architectures, a multi-threaded
version of the scheduler allows for several neurons to be launched in parallel.
A mutual exclusion control object (mutex) initiated with a counter equal to
the number of threads serves as progress control gate. When all threads have
been assigned a neuron, the scheduler waits on the mutex. Upon the end of
the stepping from a neuron, its thread goes dormant and atomically decrements
the mutex counter, waking up the scheduler, and updating its progress in the
scheduler’s progress map. At the onset of stepping, a neuron queries the time
allowed by its pre-synaptic dependencies and performs all necessary steps. An
example of scheduled stepping is illustrated in Figure 5.

2.4 Communication Reduce

Global memory address space (GAS) on the Parallax execution model allows
for remote thread execution across multiple objects (neurons) distributed across
several localities. On a single locality, each message incurs the overhead of a
lightweight thread, as GAS addresses are an abstraction to local memory. How-
ever, on a distributed execution, each call is an instantiation of a procedure in
an object held possibly in a different locality. Therefore, large amount of object-
to-object communication may become a bottleneck by saturating the network
bandwidth. This issue is trivial to overcome on MPI-based implementations, as
the sender is responsible for buffering, packing and initiating the communica-
tion, while the converse operations must follow from the receiver. On the Parallax
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Fig. 6: A sample diagram of the communication required for a selective broadcast
and an all-reduce operation with regular (left) versus locality-reduced (right)
communication.

runtime system, its resolution is not as simple, as data representation in GAS
arrays remove the locality-awareness of each object in a distributed array. To
reduce the overhead of the high amount of point-to-point (inter-neuron) messag-
ing, an extra layer of communication was introduced. Notifications of stepping
and spikes for several post-synaptic neurons are packed at the onset of communi-
cation as single packets to remote localities. At the recipient side, a mapping of
pre-synaptic id to the list of local GAS addresses, allows message to be unfolded
and locally spawn to the recipient GAS addresses in the locality. This method
replaces n remote communications by a single remote communication with n lo-
cal lightweight threads spawn. For completion, Figure 6 provides an illustration
of the communication reduce methods.

3 Results

Our strategy was implemented in the core computation of the NEURON sci-
entific application, available as open source [8]. Communication, synchroniza-
tion and memory allocations performed with MPI, OpenMP and malloc, were
replaced by the equivalent HPX counterparts. Both our and reference imple-
mentations follow the same numerical resolution. The benchmark use case is the
simulation of 100ms of electrical activity of a morphologically detailed neural
network of layer 4 and 5 cells of the rodent brain, extracted from the model
of Markram et al. [6], with the distribution of synaptic connectivity previously
presented in Figure 2. To demonstrate general applicability of our methods to
a wide range of compute architectures, we utilised four different compute archi-
tectures with high variability in processor architecture, CPU frequency, memory
bandwidth and cache: an Intel Sandy Bridge E5-2670 with 16 cores at 2.6 GHz,
a Cray XE6 compute node with an AMD Opteron 6380 with 16 cores at 2.5
GHz each, an Intel Knights Landing (KNL) Xeon Phi with 64 cores at 1.3 GHz,
and an Intel Xeon Gold 6140 with 18 cores at 2.3GHz. The L1, L2 and L3 cache
sizes for the architectures are: 448KB, 3.5MB and 35MB for the Intel E5; 768KB,
16MB and 16MB for the Opteron; 16KB, 1MB and 32 MB for the Intel KNL; and
576KB, 18MB and 24.75MB for the Xeon 6140. Each representation of a neuron
requires a total memory of 4 to 12 MB. Distributed execution were executed
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on 32 compute nodes of Cray XE6 compute nodes, with specialized Infiniband
network hardware for efficient point-to-point communication. We benchmarked
the efficiency of each feature individually. The performance analysis of individual
components follows in the following paragraphs.

Linear Containers: Cache efficiency of linear containers was measured with the
likwid suite for performance monitoring and benchmarking [13] on the Xeon 6140
processor. The performance counters account for the containers performance
only, isolating linear structures performance from other features. The bench-
mark test bench compares cache efficiency of linear versus standard library’s
containers. The estimated amounts of read/write workload are: a spike or event
notification (loop through a map of post-synaptic neuron information) at approx.
every 15 ms; a delivery of an event — spike information, external currents, time
notification — at circa every 0.05 ms, requiring a query to the priority queue; a
computation of max time time step allowed by querying the map of time instant
per pre-synaptic neuron at every timestep (0.025ms); and an insertion of future
events to be delivered at almost every time step (a push of a time event yo the
priority queue). The results of cache efficiency on the BSP-based stepping proto-
col, with 4 continuous steps per neuron, and a communication interval at every
0.1ms, is provided in Table 1 (top). Results demonstrate lower time to solution
of circa 4× on the linear implementations versus standard library’s, caused by:
(1) less instructions, suggesting a more efficient implementation; (2) less data
volume across different cache levels and system, suggesting higher reutilisation
of data structures across all memory layers; and (3) less memory data volume,
suggesting a more compact representation of data leading to more information
loaded per cache line. As a relevant remark, Layer 3 cache in the Xeon 6140
architecture is a victim cache, or a refill path of CPU cache. Thus, the L2/L3
data volume is higher in our implementation due to demotions of L2 data to L3
instead of main RAM, representing an advantageous behaviour compared to the
reference implementation.

Neuron Scheduler and Asynchronous Stepping: Our analysis was extended with
asynchronous stepping. Neuron step scheduling for earliest neuron steps first was
enabled and the distribution of steps size for different input datasets is presented
in Figure 7 (c). The step sizes vary depending on the circuit size due to increased
inter-neuron connectivity for larger circuits. In practice, increased number of
neurons leads to a possibly increased amount of pre-synaptic connectivity, and a
higher probability of having a smaller minimum synaptic delay for a given pair
of neurons, leading to smaller stepping intervals. We performed a similar cache
efficiency benchmark for the asynchronous execution model, and the details are
provided in the bottom of Table 1. Results of linear vs std implementations follow
in line with the BSP use case, displaying better memory access and lower time to
solution when comparing linear vs std container implementations. Asynchronous
scheduled stepping yields circa 5−10% lower runtime and a much more efficient
memory access compared with the previous BSP benchmark, on both linear and
std implementations.
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Fig. 7: a) Time to solution of the methods presented (neurox async.) and the Bulk
Synchronous Parallel equivalent (NEURON BSP) on the simulation of 100ms
of the electrical activity of differently sized neural networks, on four different
hardware specifications. b) Benchmark results for the simulation of 100ms of
electrical activity of an increasing number of neurons extracted, on a network of
32 Cray XE6 compute nodes. c) Distribution of maximum step size allowed when
following the earliest neuron steps first scheduler in the network with synaptic
delays represented in Figure 2.

Communication Reduce: The reduce of communications at locality level was
measured in terms or runtime and number of point-to-point (p2p) and reduce
operations on a similar test bench, and executed on 32 nodes of the Cray XE6
architecture. A benchmark compares the reduced vs non-reduced (simple) com-
munication implementations, measured on the BSP execution model — with a
point-to-point communication of synapses and a reduce operation for control
gate of neurons time advancement — and the asynchronous model presented,
where p2p communication guides synaptic activity and neurons stepping notifi-
cations. The results are provided in Table 2, and suggest a significant reduction
of communication workload and runtime, on both the BSP and asynchronous
execution models. The communication workload gap between reduced and non-
reduced implementations increases with the circuit size, as more neurons incur
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Table 1: Cache efficiency of linear and standard library (std) containers, for the
BSP execution model (4 steps per neuron, top) and the Asynchronous execution
model (with steps distribution presented in Figure 7).
Bulk Synchronous Parallel execution model (4 steps per iteration)

Metric 128 neurons 256 neurons 512 neurons 1024 neur. 2048 neur.
linear std linear std linear std linear std linear std

Runtime (secs) 2.13 14.42 12.5 64.3 63.7 278 294 1206 1298 5182
Iterations count (×103) 12.9K 12.9K 25.8K 25.8K 51.7K 51.7K 103K 103K 206K 206K
Instructions count (×109) 12.2 50.9 53.2 221 231.5 953.4 1003.2 4089 4327 17.5K
Clock cycles Per Instr. 0.54 0.85 0.71 0.90 0.82 0.87 0.87 0.88 0.90 0.89
L1/L2 data volume (GB) 1.16 1.52 5.47 9.53 32.1 90.6 266 902 2138 5065
L2/L3 data volume (GB) 1.23 1.23 4.64 4.08 20.3 14.7 80.9 56.8 330 233
L3/system data vol. (GB) 0.77 1.81 3.49 6.94 15.8 27.3 63.8 95.4 254 346
Memory data volume (GB) 0.90 1.39 2.87 4.50 11.5 16.1 46.0 58.0 163 222

Scheduler-driven execution (4+ steps per iteration, following Figure 7)

Metric 128 neurons 256 neurons 512 neurons 1024 neur. 2048 neur.
linear std linear std linear std linear std linear std

Runtime (secs) 2.03 13.6 11.9 60.9 60.4 263.6 277 1143 1222 4913
Iterations count (×103) 4.34 4.34 8.69 8.69 17.39 17.39 34.76 34.76 69.45 69.45
Instructions count (×109) 11.4 47.9 49.9 209 218.3 901.5 948.3 3868 4096 16.4K
Clock cycles Per Instr. 0.54 0.85 0.72 0.87 0.83 0.87 0.87 0.88 0.891 0.888
L1/L2 data volume (GB) 0.68 0.96 4.29 8.34 29.2 78.2 252.9 818.5 2036 4655
L2/L3 data volume (GB) 0.63 0.48 2.60 1.67 13.9 6.10 59.3 24.8 249.3 109.6
L3/system data vol. (GB) 0.43 0.96 2.10 3.95 10.6 13.7 43.03 42.06 172.3 148.1
Memory data volume (GB) 0.42 0.77 1.54 2.42 7.33 9.32 32.48 35.18 123.2 121.2

more synaptic activity and communication. An acceleration of circa 5% − 10%
is visible when moving from a BSP to an asynchronous execution model.

Acceleration on Single Compute Nodes: The benchmark for a single compute
node of the four aforementioned architectures is displayed in Figure 7 (top) and
compares our methods (neurox async.) with the reference solution (NEURON
BSP), for an increasing number of interconnected neurons. The results demon-
strate that the speed-up achieved decreases as we increase the number of neurons
in the dataset. This property is due to the reduction of maximal step allowed
by the neuron scheduler as we increase the number of neurons, as presented in
Figure 7 (c). On the Intel Xeon 6140, the methods yield a speed-up between
31% — for the largest network of 2048 neurons — and 51% for the network of
16 neurons. The speed-ups for the remaining architectures are 36%-65% for the
KNL, 35%-54% on the Intel E5, and 26%-31% on the Cray XE6.

Acceleration on Distributed Executions: In order to understand whether the sin-
gle node advantages of the asynchronous execution hold in a distributed setting
with multiple nodes, we extended our benchmark to a network of 32 nodes of the
Cray XE6 architectures. Similarly to the single compute node use case, the test
bench provides the runtime for an increasing number of neurons, in this case for
a fixed network of 32 compute nodes. The results are presented in Figure 7 (b),
and display a speed-up of 16% for the largest dataset of 32768 neurons, up to
40% for 256 neurons i.e. one neuron per core per locality.
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Table 2: Performance of regular versus locality-reduced communication in terms
of runtime and point-to-point and reduce communications, on the BSP (top)
and asynchronous (bottom) execution models.
BSP execution; 32 compute nodes; p2p comm. for spiking, reduce at every 0.1ms

Metric 512 neurons 1024 neurons 2048 neurons 4096 neurons 8192 neurons
reduce simple reduce simple reduce simple reduce simple reduce simple

Runtime (secs) 3.90 4.07 4.93 5.51 7.48 8.70 12.96 15.66 28.38 31.61
point-to-point count 2168 2327 7543 8855 24.3K 33.4K 70.1K 124K 188K 480K
reduce comm. count 100 1600 100 3200 100 6400 100 12.8K 100 25.6K

Asynchronous Execution; 32 compute nodes; p2p for spiking and stepping notification

Metric 512 neur. 1024 neur. 2048 neurons 4096 neurons 8192 neurns
reduce simple reduce simple reduce simple reduce simple reduce simple

Runtime (secs) 3.60 3.80 4.07 4.42 6.66 6.53 12.14 13.27 26.75 28.31
point-to-point count 623K 665K 2.34M 2.72M 8.25M 11.09M 44.77M 25.79M 71.75M 181.46M

4 Conclusions

In this article, we explore the capabilities of new runtime systems for the numer-
ical simulation of large systems of ODEs. We present an asynchronous model of
execution with the capability of removal of global synchronization barriers, lead-
ing to better cache-efficiency and lower time to solution, due to long timestep-
ping of individual equations based on their time coupling information. We de-
tail the implementation of a fully-asynchronous, cache-accelerated, parallel and
distributed simulation strategy supported by the HPX runtime system for the
ParalleX execution model, providing a Global Address Memory space, remote
procedure calls and asynchrony capabilities. Five components are introduced and
detailed: (1) a linear data representation of a vector, map and priority queue con-
tainers that allow fully sequential instantiation of data structures in memory; (2)
an exhaustive yet not speculative stepping of individual equations based on its
time dependencies, supported by (3) a point-to-point communication protocol
that actively notifies time dependencies of time advancements of their depen-
dees and allows for the full overlap of computation and communication; (4) an
object scheduler that further improves cache locality by maximising the num-
ber of steps per run by tracking equations progress throughout the execution;
and (5) a local communication reduce operation that translates point-to-point
to point-to-locality communication in a global address memory space.

Our methods were implemented on the core computation of the NEURON
scientific application and tested on a biologically-inspired branched neural net-
work. We analyse and demonstrate the efficiency of the features introduced in
terms of communication, cache efficiency, patterns of data loading, and time to
solution. Benchmark results demonstrate a significant speed-up in runtime in the
order of 25% to 65% across different compute architectures and up to 40% on
distributed executions. To finalize, most techniques presented follow from first
principles in Computer Science, and can therefore be applied to a wide range of
scientific problem domains.
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