Resources
Books available online, related to the topics discussed. Continuously updated.
- Deep Learning - Foundations and Concepts, Christopher M. Bishop, Hugh Bishop (pdf)
 - Pattern Classification and Machine Learning, Christopher M. Bishop (pdf)
 - Model-Based Machine Learning, John Winn et al. (pdf)
 - Mathematics for Machine Learning, Deisenroth, Aldo Faisal, Cheng S. Ong (pdf)
 - Neuronal Dynamics, Wulfram Gerstner et al. (online)
 - The Little Book of Deep Learning, Francois Fleuret (pdf)
 - Schaum's Outline of Linear Algebra (6th Ed.), Seymour Lipschutz and Marc Lipson (pdf)
 - Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz and Shai Ben-David (pdf)
 - Information Theory, Inference, and Learning Algorithms, David MacKay (pdf)
 - An Introduction to Optimization (4th editions), Edwin KP Chong, Stanislaw H Zak (pdf)
 
Material for the course Statistics for data Science at EPFL:
- lecture slides: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 - lecture videos: 1 2 3 4a 4b 4c 5a 5b 5c 6a 6b 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 - exercises: 1 2 3 4 5 6 7 8 9 10 11 12
 - solutions: 1 2 3 4 5 6 7 8 9 10 11 12
 - probabilistic density, distribution and parameters for continuous and discrete distributions
 
Other useful resources:
- Jax ML blog: how to scale your model
 - The Ultra-Scale Playbook: Training LLMs on GPU Clusters (pdf)
 - Latex Mathematical Symbols
 - The Matrix Cookbook
 - Computing Gradients with Backpropagation (Automatic Differentiation), from the Univ Princeton course COS-324, by Ryan P. Adams (pdf)
 - OpenAI's guide to Prompt Engineering